Deep learning for physical processes: incorporating prior scientific knowledge
نویسندگان
چکیده
منابع مشابه
Deep Learning for Physical Processes: Incorporating Prior Scientific Knowledge
We consider the use of Deep Learning methods for modeling complex phenomena like those occurring in natural physical processes. With the large amount of data gathered on these phenomena the data intensive paradigm could begin to challenge more traditional approaches elaborated over the years in fields like maths or physics. However, despite considerable successes in a variety of application dom...
متن کاملIncorporating Prior Knowledge on Features into Learning
In the standard formulation of supervised learning the input is represented as a vector of features. However, in most real-life problems, we also have additional information about each of the features. This information can be represented as a set of properties, referred to as meta-features. For instance, in an image recognition task, where the features are pixels, the meta-features can be the (...
متن کاملIncorporating Prior Domain Knowledge Into Inductive Supervised Machine Learning Incorporating Prior Domain Knowledge Into Inductive Machine Learning
The paper reviews the recent developments of incorporating prior domain knowledge into inductive machine learning, and proposes a guideline that incorporates prior domain knowledge in three key issues of inductive machine learning algorithms: consistency, generalization and convergence. With respect to each issue, this paper gives some approaches to improve the performance of the inductive mach...
متن کاملIncorporating Prior Knowledge into
We describe a modiication to the AdaBoost algorithm that permits the incorporation of prior human knowledge as a means of compensating for a shortage of training data. We give a convergence result for the algorithm. We describe experiments on four datasets showing that prior knowledge can substantially improve performance.
متن کاملOnline Incremental Learning of Inverse Dynamics Incorporating Prior Knowledge
Recent approaches to model-based manipulator control involve data-driven learning of the inverse dynamics relationship of a manipulator, eliminating the need for any knowledge of the system model. Ideally, such algorithms should be able to process large amounts of data in an online and incremental manner, thus allowing the system to adapt to changes in its model structure or parameters. Locally...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Mechanics: Theory and Experiment
سال: 2019
ISSN: 1742-5468
DOI: 10.1088/1742-5468/ab3195